
MATH 2A RECITATION 10/6/11

ALDEN WALKER

1. Remember

You are allowed to use a computer to draw direction fields, but you may not use a computer to do symbolic
manipulation for you (like, symbolically solve differential equations).

2. Joining Points

Suppose that I give you n red points and n blue points in the plane. Is it possible to draw straight lines
joining every blue point to a red point (pair up red and blue) so that none of the lines cross?

If you try to think up a solution to this problem, you will find that it is tricky. Here is a very clever
argument. This sort of thing shows up a lot in math. First, there are lots of ways of pairing red and blue
points with lines that do (or might) cross. In fact, there are n! ways. This is large, but finite. Now think
about the total length of all the lines in the pairing—because there are a finite number of pairings, there
is some pairing with minimum total length. Call this pairing P , and suppose that P has lines that cross.
It is easy to convince yourself by drawing a simple picture that you can reduce the total length of P by
uncrossing the lines. This is a contradiction, however, because the length of P was supposed to be minimal!
Therefore, P must not have any crossing lines. This proves the existence of a pairing with no crossings.

3. Slope Fields

If you know that y′ = f(x, y), you can just plot what y′ is at many points in the plane to get an idea of
the behavior of a solution to the differential equation. Clearly, you want to do this on a computer.

I am going to attempt to give all (or most) of my computer examples using Sage. Sage is a free, open
source alternative to Mathematica, Matlab, etc. In some ways, it is not as polished as the non-free programs,
but it is very nice in some other ways. One cool feature is the fact that its notebook interface runs using a
web browser. The people who develop Sage have set up a website (www.sagenb.org) on which anyone can
set up an account and use Sage from any computer with access to the internet. That is, no installing of
anything or worrying about keyservers.

3.1. Slope Field Commands. Go to your Sage notebook (or sagenb.org). You must first tell Sage that x
and y are variables by entering the command:

var(’x y’)

Press shift-enter to execute the command. Then, you simply type your function f(x, y) (here I am using
f(x, y) = y3 − 2y + x), followed by the bounds you want for the plot, into the function plot_slope_field

as in:
plot_slope_field(y^3 - 2*y + x, (x,-3, 3), (y,-3, 3))

The aspect ratio isn’t quite right, since you probably want a square plot, so you can give it that graphics
option using the command:

plot_slope_field(y^3 - 2*y + x, (x,-3, 3), (y,-3, 3)).show(aspect_ratio=1)

And bam, you have your plot (right click and save image to save the image — you can also run the com-
mand plot_slope_field(y^3 - 2*y + x, (x,-3, 3), (y,-3, 3)).save("slopeField.eps") to save as,
for example, an eps file):

1



2 ALDEN WALKER

-3 -2 -1 -0 1 2 3
-3

-2

-1

-0

1

2

3

Sage slope field

.

3.2. With Mathematica. Here is a command to plot the slope field in Mathematica:
VectorPlot[{1,y^3-2*y+x}/Norm[{1,y^3-2*y+x}], {x,-3,3},{y,-3,3}, VectorStyle -> Arrowheads[0]]

Actually, I think Sage makes it easier, which is a little surprising. I hear it’s also quite easy in Matlab.

4. Approximation of Solutions

4.1. Euler’s Method. The basic idea:

(1) Start at your initial point, get dx/dt there by evaluating f(x, t).
(2) Go some small distance h along a line with that slope
(3) Get the actual dx/dt there and go to step (2)

Repeat this until you reach the t-value t1 for which you want to know x(t). You have “approximated the value of
x(t1) with Euler’s method with a step size of h.” The recurrence can be stated:

tn = nh
xn+1 = xn + hf(xn, tn)

4.1.1. Example. Let dx/dt = x− t, and x(0) = 0. Approximate the value of x(1) using Euler’s method with a step
size of h = 1/4:
We just set the initial values x0 = 0, t0 = 0, so:
t1 = 1/4 x1 = 0 + (1/4)0 = 0
t2 = 1/2 x2 = 0 + (1/4)(−1/4) = −1/16
t3 = 3/4 x3 = −1/16 + (1/4)(−1/16− 1/2) = −13/64
t4 = 1 x4 = −13/64 + (1/4)(−13/64− 3/4) = −113/256 ≈ −0.44

A step size of h = 1/200 gives x(1) = −0.711517. The actual answer is −0.7182818 (yes, that’s 2− e), so that’s not
too bad.
Page 202 has some nice pictures.

4.2. Picard’s Method. Using Picard’s method, we get successive approximating functions for x, rather than
approximations for specific values x(t) as with Euler’s method. The motivation for Picard’s method is that if x is a
solution to x′ = f(x, t), then

x(t) = x(0) +

∫ t

t0

x′(t̃) dt̃ = x(0) +

∫ t

t0

f(x(t̃), t̃) dt̃

If the problem were “trivial,” then f wouldn’t depend on x, so let’s just assume the dependence is very simple,
setting x0(t) = x(0), to get the approximation:

x1(t) = x0(0) +

∫ t

t0

f(x0(t̃), t̃) dt̃

We can then repeat this process using x1 in place of x to get x2, and so on. If f is C1, then there is some small
interval on which Picard’s successive approximations are guaranteed to agree in the limit with the true solution (see
p.13 of the notes).



MATH 2A RECITATION 10/6/11 3

4.2.1. Example. As before, let dx/dt = x− t and x(0) = 0. Then we approximate

x1(t) = 0 +

∫ t

0

(0− t̃) dt̃ = − t2

2

and

x2(t) =

∫ t

0

(− t̃2

2
− t̃) dt̃ = − t3

6
− t2

2

We can see that the pattern will give

xn(t) = −
n+1∑
i=2

ti

i!

And if we let n→∞, it’s clear that we will get x∞(t) = −et + t + 1. Actually, we have solved the differential
equation, since we can check that dx∞/dt = −et + 1 = x∞ − t, and x∞(0) = 0. Pretty cool.

5. Difference Equations

These are discrete analogs of autonomous differential equations. In general, we are interested in the long-term
behavior of recursions like

xn+1 = f(xn)

For example, xn+1 = x2
n + xn + 1. A good way to qualitatively study equations like these is to draw a cobweb

diagram, an example of which can be found on p.226.

Warning!: There are a couple problems on your homework about difference equations. One is simply to plot
a cobweb diagram and describe some behavior. This isn’t too hard. The other one is a proof, which you
will probably find harder. Just like with the autonomous equations, your goal should be to draw a picture,
formally show that your picture is correct (if you zoom in), and then explain (formally) why that yields
what you want to prove.

6. Separable and Exact Equations

6.1. Separable. If you need to solve a differential equation of the form dx
dt

= g(t)
h(x)

, then you can write

h(x)dx = g(t)dt. If you integrate this, you will obtain an (implicit) solution to the DE.
Really you obtain a function in x and t for which the level sets are solutions to the DE with different initial
conditions. Notice that I’ve “multiplied by dt, which of course doesn’t make any sense. However, see p.64 for the
justification of this trick.

6.1.1. Example. Solve dx
dt

= 2t
3x2−1

with x(0) = 0: We separate to get (3x2 − 1)dx = (2t)dt, and integrating,

x3 − x = t2

In this case, when t = 0, we have x = 0, so C = 0. You can plot the implicit solution using Sage with the command
(first make sure to run var(’x t’) to tell Sage that x and t are variables):1

implicit_plot(x^3-x-t^2, (t, -1, 1), (x, -1, 1))

If you want lines for the axes, you can say:
implicit_plot(x^3-x-t^2, (t, -1, 1), (x, -1, 1)).show(gridlines=[[0],[0]])

Anyway, you get something like:

1In Mathematica, the command is ContourPlot



4 ALDEN WALKER

-1 -0.75 -0.5 -0.25 -0 0.25 0.5 0.75 1
-1

-0.75

-0.5

-0.25

-0

0.25

0.5

0.75

1

Note that the solution to the IVP is not the whole plot: since the graph doubles back, the solution is only defined
between the vertical tangents. We can determine this algebraically, since if we look at the differential equation, we
see that the solution will only be defined where 3x2 − 1 6= 0, that is, since we know x(0) = 0 (so 3x2 − 1 < 0), we see

we must have −1/
√

3 < x < 1/
√

3, or rather, −
√

3−1/2 − 3−3/2 < t <
√

3−1/2 − 3−3/2 ≈ 0.62.

6.2. Exact Equations. We can generalize from separable equations a little bit to exact equations. These are
equations of the form:

M(x, t)dt + N(x, t)dx = 0

Subject to the constraint that there is a C1 function E(x, t) such that Et = M and Ex = N . Separable equations
are an example of this with M being a function only of t and N being a function only of x. Notice that if such an E
exists, then when we implicitly differentiate something of the form E = C, we get Et + Ex

dx
dt

, which is the equation
that we started with. That is, if we find E, it gives us an implicit solution for x.

6.2.1. Testing for Exactness. If M and N are C1 and defined in a rectangle, and Mx = Nt, then the equation is
exact (see p.19 of the notes).

6.2.2. Using Exactness to Find a Solution. Since Et = M , we have

E(x, t) =

∫ t

t0

M(x, s) ds + h(x)

We then differentiate with respect to x, and the fact that Ex = N gives us

N(x, t) =

∫ t

t0

Mx(x, s) ds + h′(x)

Which will allow us to find h, assuming we can antidifferentiate.

6.2.3. Example. We want to solve the equation:

(2x2 + t)dt + (4xt + 1)dx = 0

We check that it’s exact by first noting that it’s C1 and defined everywhere (a rectangle), and that
∂
∂x

(2x2 + t) = 4x = ∂
∂t

(4xt + 1). Therefore it is exact, and we can hope to recover a solution E (a first integral).
Following the method,

E(x, t) =

∫ t

t0

(2x2 + s) ds + h(x)

= 2x2t + t2/2 + h(x)

If you are distressed by the apparent disappearance of the t0 term in the integral, have no fear, it is safely thought
of as part of h(x) since it is constant with respect to t.
Then we differentiate, since we know Ex = N , ie

4xt + 1 = N(x, t) = Ex = 4xt + h′(x)

So h′(x) = 1, so h(x) = x + C. Therefore our solution is E(x, t) = 2x2t + t2/2 + x = C.
If we want to get a specific solution, we need to plug in given values to solve for C.


