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Definition (Gromov’s density model for random groups)

Fix a rank k and a density 0 ≤ d ≤ 1. Let Fk be a free group of
rank k . Define

Gn = 〈Fk |R〉

Where the set of relators R is (2k − 1)dn words chosen uniformly
at random from all words of length n.
We say that a random group has property P if

Pr(Gn has P)→ 1 as n→∞.



Theorem (Calegari-W)

A random group at density 0 ≤ d < 1/2 contains a quasiconvex
surface subgroup. If d > 0, then this subgroup can be taken to be
the image of a homologically essential map of an orientable surface.

Theorem (Calegari-Wilton)

A random group at density d < 1/2 contains a subgroup
isomorphic to a 3-manifold with totally geodesic boundary.

Theorem (Calegari)

A random group at density d < 1/2 contains quasi convex
subgroups commensurable with infinite families of Coxeter groups.



Question (Gromov)

Does every one-ended hyperbolic group contain a surface
subgroup?

The answer is “yes” for:

I Coxeter groups (Gordon-Long-Reid)

I Graphs of free groups with cyclic edge groups and b2 > 0
(Calegari)

I Fundamental groups of closed hyperbolic 3-manifolds
(Kahn-Markovic)

I Certain doubles of free groups (Kim-Wilton, Kim-Oum)
I Random graphs of free groups:

I HNN extensions of free group by random endomorphisms
(Calegari-W)

I Random amalgams of free groups (Calegari-Wilton)

I Random groups at density 0 ≤ d < 1/2 (Calegari-W)
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Comparison with Kahn-Markovic surfaces

The original Kahn-Markovic surfaces in hyperbolic 3 manifolds are
homologically trivial. They take two copies of each pair of pants
with opposite orientations in order to make it easier to glue them
up. It is harder in the case of

Theorem (Kahn-Markovic)

The Ehrenpreis conjecture.

Theorem (Liu-Markovic)

Every second homology class in a closed hyperbolic 3-manifold is
represented by a π1-injective surface map. Every homologically
trivial 1-manifold bounds a π1-injective surface.



Comparison with Kahn-Markovic surfaces

Similarly:

Theorem (Calegari-W)

A random group at density 0 ≤ d < 1/2 contains a surface
subgroup.

Uses a trick; harder work gives:

Theorem (Calegari-W)

A random group at density 0 < d < 1/2 contains a homologically
essential surface subgroup.

There are analogies between (a small part of!) these proofs and
Kahn-Markovic, although these analogies don’t appear to lead to
anything new.



Theorem (Calegari-W)

A random group at density d < 1/2 contains a quasiconvex surface
subgroup. If d > 0, then this subgroup can be taken to be the
image of a homologically essential map of an orientable surface.

General proof strategy: Build a map f of a surface S with boundary
into Fk such that f (∂S) is the relator r . In Gn, then, the map
extends over a disk, giving a map of a closed surface S ′ into Gn.

If r is not homologically trivial in Fk , we’ll build a surface with
boundary r + r−1. If r is homologically trivial in Fk , then the map
f : S ′ → Gn is homologically essential.



Main question for the proof:

I How can we build a map f : S → Fk so that
f : S → Fk/〈〈R〉〉 = Gn is π1-injective?

There are many steps, but a key result is the thin fatgraph
theorem.



Fatgraphs

A fatgraph over Fk is a graph with a cyclic order on the incoming
edges and edges labeled by generators of Fk (here a, b).
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A fatgraph can be fattened into a surface whose boundary is
decorated with words in Fk .



Fatgraphs
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The labeling on a fatgraph over Fk induces a map of the surface
with boundary into Fk .



Lemma (Culler)

After compression and homotopy, every surface map into a free
group is a fatgraph map.

Proof.
Make the surface skinny.



Fatgraphs can be quite big
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Notice how this fatgraph has many long edges (sequences of
2-valent vertices).



The thin fatgraph theorem

Theorem (Calegari-W)

For any L > 0, there is C > 0 so that given a random word w of
length n, there is a trivalent fatgraph with boundary w and with all
edges of length at least L with probability 1− O(e−Cn).

I.e. A long random word is the boundary of a sparse fatgraph.

This theorem is the L∞ version of the theorem:

Theorem (Calegari-W)

In a free group of rank k, there is C > 0 so that with probability
1− O(n−C ), a random word of length n is the boundary of a
fatgraph with average edge length log(n)/2 log(2k − 1).



The thin fatgraph theorem proof
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To build a fatgraph with desired boundary, we can proceed by
gluing small portions of the loops, one at a time. After gluing a
small amount of our loops, we obtain a partial fatgraph and the
remainder loops. Then we glue portions of the remainder, etc.



The thin fatgraph theorem proof

We want to glue up a long random word. The trick is to use a
sequence of gluings to turn a single long word into a huge number
of almost equidistributed remainder loops which are uniformly
bounded in size.



Trading a big loop for little loops
Step 1: Pinch off short loops:
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The remainder is now one big loop and a “reservoir” of
equidistributed short loops:



Step 2: Glue aligned long segments:
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The remainder is now several loops, where we can’t control the
length of each loop, but the total length is small compared to the
size of the reservoir.



Step 3: Gluing the remainder:
The total length of the reservoir is large compared to the
remainder, so we can assemble exactly the inverses of our
remainder loops.

Now there is only the reservoir, a large, almost equidistributed
collection of loops of a fixed size.



Then either

I Take two copies of the reservoir, pair them up to get a
nonorientable surface, take a double cover to get a
homologically trivial π1-injective surface.

I Apply the theorem:

Theorem (Calegari-W)

For any L, a sufficiently equidistributed collection of loops of
length 4L is the boundary of a fatgraph with edges of length L.

To get a homologically essential π1-injective surface.

Hence,

Theorem (Calegari-W)

A random group at density d < 1/2 contains a quasiconvex surface
subgroup. If d > 0, then this subgroup can be taken to be the
image of a homologically essential map of an orientable surface.


